Афродита Древней Греции: история возникновения мифа

Методики коррекции заикания Что лечит заикание

Шаламов - заключенный колымских лагерей

Колыма (гулаг). Колыма. Урановый рудник «Бутугычаг Мистические истории с заключенными на колыме

душепагубная самуиловщина

Экзаменационные вопросы по генетике

Загадки "правила дорожного движения"

Презентация на тему "пять платоновых тел" Платоновы тела и тайны мироздания презентация

Какие ошибки встречаются при формировании управленческой отчетности?

Финансовая структура предприятия и ее формирование - реферат Финансовая структура предприятия пример

Разновидность хирургии. Общая хирургия. Типы заболеваний, на которых специализируется хирург

Предменструальный синдром: как облегчить состояние?

Рецепт: Соевое молоко - китайский народный рецепт Соевое молоко из соевых бобов

Чем знаменит день 1 июня

Условное подразделение тела животных на части и области

Что такое днк рнк и атф. Строение, свойства и функции нуклеиновых кислот. Самоудвоение молекулы ДНК

Строение нуклеиновых кислот

Нуклеиновые кислоты – фосфосодержащие биополимеры живых организмов, обеспечивающие сохранение и передачу наследственной информации.

Макромолекулы нуклеиновых кислот открыл в 1869 г. Швейцарский химик Ф. Мишер в ядрах лейкоцитов, обнаруженных в навозе. Позже нуклеиновые кислоты выявили во всех клетках растений и животных, грибов, в бактериях и вирусах.

Замечание 1

Существует два вида нуклеиновых кислот – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) .

Как видно из названий, молекула ДНК содержит пентозный сахар дезоксирибозу, а молекула РНК – рибозу.

Сейчас известно большое количество разновидностей ДНК и РНК, которые отличаются друг от друга строением и значением в метаболизме.

Пример 1

В бактериальной клетке кишечной палочки содержится около 1000 разновидностей нуклеиновых кислот, а у животных и растений – ещё больше.

Каждому виду организмов характерен свой собственный набор этих кислот. ДНК локализируется преимущественно в хромосомах клеточного ядра (% всей ДНК клетки), а также в хлоропластах и митохондриях. РНК содержится в цитоплазме, ядрышках, рибосомах, митохондриях, пластидах.

Состоит молекула ДНК из двух полинуклеотидных цепей, спирально закрученных относительно друг друга. Цепы расположены антипараллельно, то есть 3́-конец и 5́-конец.

Структурными компонентами (мономерами) каждой такой цепи являются нуклеотиды . В молекулах нуклеиновых кислот количество нуклеотидов различно - от 80 в молекулах транспортных РНК до нескольких десятков тысяч в ДНК.

Любой нуклеотид ДНК содержит одно из четырёх азотистых оснований (аденин, тимин, цитозин и гуанин ), дезоксирибозу и остаток фосфорной кислоты .

Замечание 2

Нуклеотиды отличаются лишь азотистыми основаниями, между которыми существуют родственные связи. Тимин, цитозин и урацил относятся к пиримидиновым, а аденин и гуанин – к пуриновым основаниям.

Соседние нуклеотиды в полинуклеотидной цепи связаны ковалентными связями, образующимися между дезоксирибозой молекулы ДНК (или рибозой РНК) одного нуклеотида и остатком фосфорной кислоты другого.

Замечание 3

Хотя в молекуле ДНК только четыре типа нуклеотидов, но благодаря изменению последовательности их расположения в длинной цепи молекулы ДНК достигают огромного разнообразия.

Две полинуклеотидные цепи объединяются в единую молекулу ДНК с помощью водородных связей , которые образуются между азотистыми основаниями нуклеотидов разных цепей.

При этом аденин (А) способен соединяться только с тимином (Т), а гуанин (Г) – только с цитозином (Ц). В результате у различных организмов количество адениловых нуклеотидов равно количеству тимидиловых, а количество гуаниловых – количеству цитидиловых. Такая закономерность называется «правило Чаргаффа» . Таким образом определяется последовательность нуклеотидов в одной цепи согласно их последовательность в другой.

Такая способность нуклеотидов к выборочному соединению называется комплементарностью , и это свойство обеспечивает образование новых молекул ДНК на основании исходной молекулы (репликация ).

Замечание 4

Двойная спираль стабилизируется многочисленными водородными связями (две образуются между А и Т, три - между Г и Ц) и гидрофобными взаимодействиями.

Диаметр ДНК составляет 2 нм, шаг спирали – 3,4 нм, а в каждом витке содержится 10 пар нуклеотидов.

Длина молекулы нуклеиновых кислот достигает сотни тысяч нанометров. Это значительно превышает наибольшую макромолекулу белка, длина которой в развёрнутом виде не больше 100 – 200 нм.

Самоудвоение молекулы ДНК

Каждому клеточному делению при условии абсолютно чёткого соблюдения нуклеотидной последовательности предшествует репликация молекулы ДНК.

Начинается она с того, что временно раскручивается двойная спираль ДНК. Это происходит под действием ферментов ДНК-топоизомеразы и ДНК-геликазы. ДНК-полимераза и ДНК-праймаза катализируют полимеризацию нуклеозидтрифосфатов и образование новой цепи.

Точность репликации обеспечивается комплементарным (А – Т, Г – Ц) взаимодействием азотистых оснований матричной цепи, которая строится.

Замечание 5

Каждая полинуклеотидная цепь является матрицей для новой комплементарной цепи. В результате образуются две молекулы ДНК, одна половина каждой из которых происходит от материнской молекулы, а другая является заново синтезированной.

Причём синтезируются новые цепи сначала в виде коротких фрагментов, а потом специальным ферментом эти фрагменты «сшиваются» в длинные цепи.

Две образовавшиеся новые молекулы ДНК являются точной копией исходной молекулы благодаря репликации.

Этот процесс является основой для передачи наследственной информации, которая осуществляющейся на клеточном и организменном уровнях.

Замечание 6

Важнейшая особенность репликации ДНК – её высокая точность, которую обеспечивает специальный комплекс белков – «репликационная машина».

Функции «репликационной машины»:

  • продуцирует углеводы, образующие комплементарную пару с нуклеотидами материнской матричной цепи;
  • выступает катализатором при образовании ковалентной связи между концом растущей цепи и каждым новым нуклеотидом;
  • корректирует цепь, удаляя нуклеотиды, которые неправильно включились.

Число ошибок «репликационной машины» составляет очень малую величину, менее одной ошибки на 1 млрд. нуклеотидов.

Однако бывают случаи, когда «репликационная машина» может пропустить или вставить несколько лишних оснований, включить Ц вместо Т или А вместо Г. Каждая такая замена последовательности нуклеотидов в молекуле ДНК является генетической ошибкой и называется мутацией . Во всех последующих поколениях клеток такие ошибки будут снова воспроизводиться, что может привести к заметным негативным последствиям.

Типы РНК и их функции

РНК представляет из себя одну полинуклеотидную цепь (у некоторых вирусов две цепи).

Мономерами являются рибонуклеотиды.

Азотистые основания в нуклеотидах:

  • аденин (А);*
  • гуанин (Г);
  • цитозин (Ц);
  • урацил (У).*

Моносахарид – рибоза.

В клетке локализируется в ядре (ядрышке), митохондриях, хлоропластах, рибосомах, цитоплазме.

Синтезируется путём матричного синтеза по принципу комплементарности на одной из цепей ДНК, не способна к репликации (самоудвоению), лабильна.

Существуют различные типы РНК, которые отличаются по величине молекул, структуре, расположением в клетке и функциям.

Низкомолекулярные транспортные РНК (тРНК) составляют около 10% общего количества клеточной РНК.

В процессе передачи генетической информации каждая тРНК может присоединить и перенести лишь определённую аминокислоту (например, лизин) к рибосомам – месту синтеза белка. Но для каждой аминокислоты есть более одной тРНК. Потому существует намного больше 20 различных тРНК, которые отличаются по своей первичной структуре (имеют различную последовательность нуклеотидов).

Рибосомальные РНК (рРНК) составляют до 85% всех РНК клетки. Входя в состав рибосом они выполняют тем самым структурную функцию. Также рРНК берут участие в формировании активного центра рибосомы, где в процессе биосинтеза белка образуются пептидные связи между молекулами аминокислот.

С участием информационных, или матричных, РНК (иРНК) программируется синтез белков в клетке. Хотя их содержание в клетке относительно низкое – около 5% - от общей массы всех РНК клетки, по своему значению иРНК стоят на первом месте, поскольку они непосредственно осуществляют передачу кода ДНК для синтеза белков. При этом каждый белок клетки кодирует специфическая иРНК. Объясняется это тем, что РНК во время своего синтеза получают информацию от ДНК о структуре белка в виде скопированной последовательности нуклеотидов и для обработки и реализации переносят её к рибосоме.

Замечание 7

Значение всех типов РНК состоит в том, что они являются функционально объединённой системой, направленной на осуществление в клетке синтеза специфических для неё белков.

Химическое строение и роль АТФ в энергетическом обмене

Аденозинтрифосфорная кислота (АТФ ) содержится в каждой клетке – в гиалоплазме (растворимой фракции цитоплазмы), митохондриях, хлоропластах и ядре.

Она обеспечивает энергией большинство реакций, происходящих в клетке. С помощью АТФ клетка способна двигаться, синтезировать новые молекулы белков, жиров и углеводов, избавляться от продуктов распада, осуществлять активный транспорт и т.п.

Молекула АТФ образована азотистым основанием, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ между собой соединены высокоэнергетическими (макроэргическими) связями.

В результате гидролитического отщепления конечной фосфатной группы образуется аденозиндифосфорная кислота (АДФ ) и освобождается энергия.

После отщепления второй фосфатной группы образуется аденозинмонофосфорная кислота (АМФ) и высвобождается ещё одна порция энергии.

АТФ образуется из АДФ и неорганического фосфата за счёт энергии, которая освобождается во время окисления органических веществ и в процессе фотосинтеза. Называется этот процесс называется фосфориллированием. При этом должно быть использовано не менее 40 кДж/моль АТФ, аккумулированной в её макроэргических связях.

Значит, основное значение процессов дыхания и фотосинтеза состоит в том, что они поставляют энергию для синтеза АТФ, при участии которой в клетке происходит значительное количество различных процессов.

АТФ чрезвычайно быстро восстанавливается. Пример У человека каждая молекула АТФ расщепляется и снова возобновляется 2400 раз на сутки, потому средняя длительность её жизни менее 1 мин.

Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах. АТФ, которая образовалась, по каналах эндоплазматического ретикуллюма поступает в те участки клетки, где необходима энергия.

Любые виды клеточной активности происходят за счёт энергии, которая освобождается во время гидролиза АТФ. Оставшаяся энергия (около 50%), которая освобождается во время расщепления молекул белков, жиров, углеводов и других органических соединений, рассеивается в виде тепла рассеивается и практически существенного значения для жизнедеятельности клетки не имеет.

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ - одного из основных источников энергии.

АТФ - универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков

Рибоза - углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин - азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты . К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат). Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже - 120 кДж энергии. При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ - одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) - цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы - это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата - это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза - анаэробный этап В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С 6 Н 12 О 6 + 2АДФ + 2Фн --> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

Дыхание клетки

Окислительное фосфорилирование - это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования - это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза - основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

В клетке около 1 млрд молекул АТФ.

Каждая молекула живет не больше 1 минуты.

Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

Учебные цели:

  • углубление и обобщение знаний о строении и значении нуклеиновых кислот.
  • формирование знаний об энергетическом веществе клетки – АТФ

Знать: Нуклеиновые кислоты. ДНК – химический состав, строение, удвоение ДНК, биологическая роль. РНК, АТФ – структура, синтез, биологиче­ские функции.

Уметь: составлять схемы цепочек ДНК и РНК по принципу комплементарности.

Задачи урока:

  • Образовательные: ввести понятие нуклеиновых кислот, раскрыть особенности их состава и строения, функций, познакомить с азотистыми основаниями и пространственной организацией ДНК и РНК, основными видами РНК, определить черты сходства и различия между РНК и ДНК, сформировать понятие об энергетическом веществе клетки – АТФ, изучить строение и функции этого вещества.
  • Развивающие: развивать умения сравнивать, оценивать, составлять общую характеристику нуклеиновых кислот, развитие воображения, логическое мышление, внимание и память.
  • Воспитывающие: воспитывать дух соревнования, коллективизма, точность и быстроту ответов; осуществлять эстетическое воспитание, воспитание правильного поведения на уроке, профориентация.

Вид занятий: комбинированный урок – 80 минут.

Методы и методические приемы : рассказ с элементами беседы, демонстрация.

Оборудование: рисунки учебника, таблицы, модель ДНК, доска.

Оснащение занятий:

  • тестовые задания;
  • карточки для индивидуального опроса.

Ход занятия

I .Организационная часть:

  • проверка присутствующих;
  • проверка аудитории и группы к занятию;
  • запись в журнале.

II. Контроль уровня знаний:

III. Сообщение темы.

IV. Изложение нового материала.

План изложения материала:

  • История изучения нуклеиновых кислот.
  • Строение и функции.
  • Состав, нуклеотиды.
  • Принцип комплементарности.
  • Структура ДНК.
  • Функции.
  • Репликация ДНК.
  • РНК – состав, строение, виды, функции.
  • АТФ – строение и функции.

Какое вещество является носителем наследственной информации? Какие особенности его строения обеспечивают многообразие наследственной информации и ее передачу?

В апреле 1953 года великий датский физик Нильс Бор получил письмо от американского ученого Макса Дельбрюка, где он писал:"Потрясающие вещи происходят в биологии. Мне кажется, что Джеймс Уотсон сделал открытие, сравнимое с тем, что сделал Резерфорд в 1911 году (открытие атомного ядра)".

Джеймс Дьюи Уотсон родился в США в 1928 году. Еще студентом Чикагского университета он занялся самой актуальной тогда проблемой в биологии – ролью генов в наследственности. В 1951 году, приехав на стажировку в Англию, в Кембридж, он знакомится с Френсисом Криком.

Френсис Крик почти на 12 лет старше Уотсона. Он родился в 1916 году и по окончании Лондонского колледжа работал в Кембриджском университете.

В конце 19 века известно, что в ядре находятся хромосомы и они состоят из ДНК и белка. Знали, что ДНК передает наследственную информацию, но главное оставалось тайной. Как же работает такая сложная система? Решить эту задачу можно было, только узнав устройство загадочной ДНК.

Уотсон и Крик должны были придумать такую модель ДНК, которая соответствовала бы рентгеновской фотографии. Моррису Уилкинсу удалось “сфотографировать” молекулу ДНК с помощью рентгеновских лучейПосле 2-х лет кропотливой работы ученые предложили изящную и простую модель ДНКПотом еще 10 лет после этого открытия ученые разных стран проверяли догадки Уотсона и Крика и, наконец, вердикт был вынесен: “Все верно, ДНК устроена именно так!” Уотсон, Крик и Моррис Уилкинс получили за это открытие в 1953 году Нобелевскую премию.

ДНК – полимер.

Актуализация знаний: Что такое полимер?

Что такое мономер?

Мономерами ДНК являются нуклеотиды, которые состоят из:

  • Азотистого основания
  • Сахара дезоксирибозы
  • Остатка фосфорной кислоты

Зарисовать схему нуклеотида на доске.

В молекуле ДНК обнаружены различные азотистые основания:

  • Аденин (А), обозначим это азотистое основание
  • Тимин (Т), обозначим это азотистое основание
  • Гуанин (Г), обозначим это азотистое основание
  • Цитозин (Ц), обозначим это азотистое основание

Вывод, что нуклеотидов – 4, и они отличаются только азотистыми основаниями.

Цепочка ДНК состоит из чередующихся нуклеотидов, связанных ковалентной связью: сахар одного нуклеотида и остаток фосфорной кислоты – другого нуклеотида. В клетке обнаружено не просто ДНК, состоящее из одной нити, а более сложное образование. В этом образовании две нити нуклеотидов связанные азотистыми основаниями (водородными связями) по принципу комплементарности.

Можно предположить, что получающаяся цепочка ДНК сворачивается в спираль из-за разного количества водородных связей между азотистыми основаниями разных цепочек и таким образом принимает самую выгодную форму. Такая структура достаточно прочная, разрушить ее трудно. И, тем не менее, это происходит в клетке регулярно.

В качестве вывода составляется опорный конспект:

  • НУКЛЕИНОВЫЕ КИСЛОТЫ
  • ПОЛИМЕРЫ
  • ДНК – двойная спираль
  • Крик, Уотсон – 1953,
  • Нобелевская премия
  • комплементарность
  • Хранение наследственной информации
  • Воспроизведение наследственной информации
  • Передача наследственной информации

Рибонуклеиновая кислота (РНК), также линейный полимер, но гораздо более короткий. Основания РНК комплементарны основаниям ДНК, но в молекуле РНК однооснование – тимин (Т) – заменено на урацил (У) и вместо дезоксирибозы использована просто рибоза, имеющая на один атом кислорода больше. Кроме того, РНК – одноцепочечная структура.

Природа создала три основных вида молекул РНК.

Молекулы, считывающие информацию с ДНК, называются информационными РНК (и-РНК). Такая молекула быстро соединяется с рибосомой, непродолжительное время работает как матрица (поэтому называется еще и матричной, или м-РНК), «износившись», разваливается, и на ее место встает новая молекула и-РНК. Этот процесс идет непрерывно на протяжении всей жизни клетки.

Молекулы РНК другого типа имеют гораздо меньшие размеры и разделены на 20 разновидностей в соответствии с количеством разных аминокислот, входящих в белки. Каждая молекула этого типа с помощью определенного фермента соединяется с одной из 20 аминокислот и доставляет ее к рибосоме, уже соединенной с и-РНК. Это – транспортная РНК (т-РНК).

Наконец, в рибосомах есть своя, рибосомная, РНК (р-РНК), не несущая генетической информации, но входящая в состав рибосомсом.

Учащиеся самостоятельно составляют опорный конспект по РНК

РНК – одиночная цепочка

А, У, Ц, Г – нуклеотиды

Виды РНК –

  • и-РНК
  • т-РНК
  • р-РНК

Биосинтез белка

Ученые выяснили, что каждая молекула тела использует особое излучение, самые сложные вибрации издает молекула ДНК. Внутренняя “музыка” сложна и разнообразна и, что самое удивительное, в ней четко прослеживаются определенные ритмы. Преобразованные компьютером в графическую картинку, они являют собой завораживающее зрелище. Можно следить за ними часами, месяцами, годами – все время “оркестр” будет исполнять вариации на знакомую тему. Играет он не для собственного удовольствия, а на благо организма: ритм, заданный ДНК и “подхваченный” белками и другими молекулами, лежит в основе всех биологических связей, составляет нечто вроде каркаса жизни; нарушение ритма влечет за собой старение и болезнь. У молодых этот ритм более энергичный, поэтому они любят слушать рок или джаз, с возрастом белковые молекулы теряют свой ритм, поэтому более взрослые люди любят слушать классику. Классическая музыка совпадает с ритмом ДНК (академик Российской академии В.Н. Шабалин изучал это явление).

Можно дать совет: Начинай утро с хорошей мелодии и проживешь дольше!

Аденозинтрифосфорная кислота. Универсальный биологический аккумулятор энергии. Высококалорийное клеточное «топливо». Содержит 2 макроэргические связи. Макроэргическими называются соединения, в химических связях которых запасена энергия в форме, доступной для использования в биологических процессах.

АТФ (нуклеотид) состоит:

  • азотистое основание
  • углевод,
  • 3 молекулы Н 3 РО 4

Макроэргические связи

  • АТФ + Н 2 О - АДФ + Ф + Е (40 к Дж/ моль)
  • АДФ + Н 2 О - АМФ + Ф + Е (40 к Дж/ моль)

Энергетическая эффективность двух макроэргических связей составляет 80 к Дж/моль. АТФ образуется в митохондриях клеток животных и хлоропластах растений Энергия АТФ используется на движение, биосинтез, деление и др. Средняя продолжительность жизни 1 молекулы АТФ менее 1 мин, т.к. она расщепляется и восстанавливается 2400 раз в сутки.

V. Обобщение и систематизация.

Фронтальный опрос:

  • Объясните, что такое нуклеиновые кислоты?
  • Какие виды НК вы знаете?
  • Являются ли НК полимерами?
  • Каков состав нуклеотида ДНК?
  • Каков состав нуклеотида РНК?
  • В чем сходство и различие между нуклеидами РНК и ДНК?
  • АТФ – постоянный источник энергии для клетки. Его роль можно сравнить с ролью аккумулятора. Объясните, в чем заключается это сходство.
  • Какое строение имеет АТФ?

VI. Закрепление нового материала:

Решить задачу:

Одна из цепей фрагмента молекулы ДНК имеет следующее строение: Г- Г-Г-А -Т-А-А-Ц-А-Г-А-Т

а) Укажите строение противоположной цепи

б) Укажите последовательность нуклеотидов в молекуле и – РНК, по­строенной на этом участке цепи ДНК.

Задание: составить синквейн.

ДНК
хранит, передает
длинная, спиралеобразная, закрученная
1953 год Нобелевская премия
полимер

VII. Заключительная часть:

  • оценка работы,
  • замечания.

VIII. Домашнее задание:

  • параграф учебника,
  • составить кроссворд на тему: «Нуклеиновые кислоты»,
  • подготовить сообщения по теме «Органические вещества клетки» .

Рибонуклеиновые кислоты (как и ДНК) тоже являются полимерами, мономерами которых служат нуклеотиды. Но нуклеотиды РНК отличаются по своему химическому составу от нуклеотидов ДНК. В состав нуклеотидов РНЕ, в отличие от нуклеотидов ДНК, входит вместо пентозы дезоксирибозы пентоза рибоза. В составе нуклеотидов РНК отсутствует азотистое основание тимин. Оно заменяется другим азотистым основанием, которое называется урацил. Таким образом, нуклеотид РНК можно представить в виде следующей схемы:

В отличие от молекулы ДНК, молекула РНК представляет собой не двойную, а одинарную спираль (рис. 3)

Рис. 3. Схема строения молекул ДНК и РНК

Существует три основных типа РНК, которые отличаются друг от друга по месту локализации в клетке, нуклеотидному составу, размерам и выпол­няемым функциям. Это - информационная, или ее еще называют матрич­нойРНК (и-РНК или м-РНК), транспортная РНК (т-РНК) и рибосомная РНК (р-РНК).

Информационная РНК строится по принципу комплементарности на одной из цепей ДНК в ядре клетки, снимая с нее тем самым информацию, которая необходима для построения рибосомой определенного с заданны­ми свойствами белка. Информационная РНК не только снимает информа­цию с молекулы ДНК, но и несет эту информацию в рибосому, благодаря способности покидать пределы ядра. Процесс построения и-РНК на молекуле ДНК называется транскрипцией.

Для построения белка недостаточно иметь только информацию. Белок строится в рибосоме из аминокислот, которые необходимо транспортиро­вать сюда из цитоплазмы, где они находятся в свободном состоянии. Эту функцию выполняют молекулы транспортной РНК. Они невелики по раз­меру и имеют постоянную вторичную структуру, которая напоминает лист клевера.

Существует 20 видов транспортных РНК, так как каждый из них может переносить только одну из 20 видов аминокислот, используемых клеткой для синтеза белка.

Рибосомная РНК обеспечивает структурную функцию. Ее молекулы вместе с молекулами рибосомных белков обеспечивают определенное про­странственное расположение и-РНК и т-РНК на рибосоме. Процесс синтеза белка из аминокислот на матрице (форме) и-РНК называется трансляцией.

Важнейшей биологической функцией нуклеиновых кислот является их участие в биосинтезе белка, лежащего в основе механизмов нормально­го роста и развития организма, они также хранят и передают наследствен­ную информацию.

Аденозинтрифосфорная кислота (АТФ)

Аденозинтрифосфорная кислота - вещество, которое используется клеткой как универсальный биологический аккумулятор энергии. Для того чтобы понять, как АТФ удается выполнять столь важную для жизнедея­тельности клетки функцию, необходимо познакомиться с химическим стро­ением ее молекулы. Молекула АТФ представляет собой уже знакомую вам структуру, которая называется нуклеотидом. Он состоит из азотистого ос­нования аденина, углевода рибозы и трех остатков фосфорной кислоты:

Две химические связи в молекуле АТФ (О ~ Р) называются макроэргическими связями, их отличительная особенность состоит в том, что они заключают в себе гораздо больше энергии, чем какие бы то ни было дру­гие химические связи. Разрушаются макроэргические связи при взаимодей­ствии АТФ с водой (такие реакции называются реакциями гидролиза). Когда в результате гидролиза от молекулы АТФ отщепляется одна молекула фосфорной кислоты, она превращается в молекулу АДФ (аденозиндифосфорную кислоту) (рис. 4), а при дальнейшем гидролизе молекула АДФ превращается в молекулу АМФ (аденозинмонофосфорную кислоту). В первом случае, при разрыве одной макроэргической связи выделяется 42 кДж энергии, во втором – еще 42 кДж энергии.

Таким образом, в результате расщепления молекулы АТФ выделяется огромное количество энергии (84 кДж), которая расходуется клеткой на процессы жизнедеятельности. Накапливается запас молекул АТФ в особой органелле клетки, которая называется митохондрией.

Рис. 4. Схема строения АТФ и превращения ее в АДФ

1. В тетради назовите сходства и отличия в строении ДНК и РНК.

2. В тетради дайте определение понятиям: комплементарность, репликация, траскрипция, трансляция, ген.

Обозначьте знаком «+» все правильные ответы:

3. В состав нуклеотида входят:

 А) пентоза;  Б) остаток фосфорной кислоты;

 В) гексоза;  Г) азотистое основание;

 Д) остаток сульфатной кислоты

4. Мономеры нуклеиновых кислот:

 А) моносахариды;  Б) нуклеозиды;

 В) аминокислоты;  Г) нуклеотиды;

 Д) азотистые основания

5. В состав нуклеотидов молекулы ДНК входят:

 Г) цитозин;  Д) урацил

6. В состав нуклеотидов РНК входят:

 А) рибоза;  Б) дезоксирибоза;  В) тимин;

 Г) аденин;  Д) урацил

7. Соседние нуклеотиды в полинуклеотидной цепи соединены связями:

 А) водородными;  Б) ковалентными;

 В) гидрофильно-гидрофобными взаимодействиями;

 Г) ионными;  Д) пептидными

8. Определите соответствие между молекулами и их функциями:

 А) АТФ 1) является матрицей для синтеза белка

 Б) р-РНК 2) транспортирует к месту синтеза белка

аминокислоты

 В) и-РНК 3) входит в состав рибосом

 Г) т-РНК 4) является универсальным перенос-

чиком энергии

5) является матрицей для синтеза и-РНК

9. По правилу комплементарности определите последовательность нуклеотидов второй цепочки ДНК, если последовательность первой цепочки следующая:

ААА ГГЦ ТАА ТТТ ЦАГ

 А) ТТЦ ЦТА АТТ ААЦ ГГЦ;

 Б) ТТТ ЦЦГ ТТА ААГ ГТЦ;

 В) ТТТ ЦЦГ АТТ ААА ГТЦ;

 Г) ГГЦ ТАТ ГГТ ААТ ГТЦ.

10. Определите количество аминокислот, которые входят в состав белка, который кодируется последовательностью из 1035 нуклеотидов:

 А) 1035;  Б) 173;  В) 154;  Г) 345

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Вам также будет интересно:

«Мороз, Красный Нос», анализ поэмы Некрасова
Только покойница в белом была:Спит - молодая, спокойная,Знает, что будет в раю.Поцеловала и...
Маринад для сочной курицы
Курицу можно готовить всегда по-разному, меняя один только маринад. Она может напоминать...
Мыть полы во сне исламский сонник
Многие, видевшие такой сон, не стали задумываться о его толковании, так как такие обыденные...
Огурцы по-корейски без стерилизации на зиму
Чтобы приготовить на зиму вкусные огурцы по-корейски есть множество рецептов. Одни...
Лучшие книги дейла карнеги Что написал карнеги
Дейл Карнеги (24 ноября 1888 - 1 ноября 1955) - американский писатель, публицист,...